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Abstract 

 While preexisting research regarding cigarette smoke, carbon monoxide 

poisoning, dust/allergens and other air pollutants exits, studying volatile organic 

compound (VOC) contamination indoors is a relatively recent endeavor. While certain 

VOCs are considered carcinogens with known detrimental health effects, new research 

involves investigating VOC sources, contaminant concentration in ambient indoor air and 

possible treatment technologies. This paper will not only detail different types of air 

pollutants, their sources, and health effects, but also delve deeper into VOC 

contamination in health related facilities (mainly hospitals) and address possible 

treatment methods such as photocatalytic (PCO) oxidation. 

 Particulate matter, VOCs, biological contaminants, and heavy metals all 

represent contaminants of concern in our indoor environments and each of these 

contaminants have their own health-related impacts. Understanding the sources and 

effects of these pollutants in health-facilities is crucial to understanding how to prevent 

exposure and begin treating these contaminants. Health-care facilities in general not only 

have high levels of many of these contaminants to begin with, but also have high 

standards of air quality for certain medical procedures and operating rooms. As such, 

high quality filters, advanced ventilation systems and technical practices help to reduce 

the risk of contaminant exposure as well as infection.  Factors such as temperature, 

humidity and time of year can additionally affect the indoor environment as indoor air 

quality is often a product of the outdoor environment and external factors.  

 Even with specific precautions, patients are still at risk of exposure to 

multiple air pollutants including microorganisms, particulate matter and VOCs. Even 
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though published studies have cited VOCs levels below exposure limits, these studies do 

not include cumulative impacts, chronic effects or short, high-level exposure. Future 

studies are necessary to determine these cumulative and chronic impacts and also to 

determine the true threat that these chemical pose to human health.  

 While treatment technologies such as photocatalytic oxidation are 

promising and have the potential to remove harmful contaminants, there are still multiple 

limitations to their feasibility and scaling in environments such as hospitals and other 

healthcare facilities.  
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Chapter 1 

Introduction to Indoor Air Quality 

1.1 Introduction to Indoor Air Quality 

 While outdoor pollution has long been recognized as a contributor to adverse 

health outcomes, indoor air quality (IAQ) has recently been gaining attention and 

generating research interests as humans are now spending the majority (over 90%) of 

their time indoors [1]. With a broad spectrum of pollutants present in our indoor 

environment, including particulate matter (PM) (both viable and unviable), Nitrogen 

Oxides (NOxs), Carbon Monoxide (CO) and volatile organic compounds (VOCs), IAQ 

represents a quintessential subset of air quality engineering. With an increase in time 

spent indoors, studying contaminant concentration and health outcomes in different 

indoor environments represents an important new field. Ensuring that our indoor 

environments are safe and contaminant-free is crucial in safeguarding a healthy and 

sustainable future for not just current generations but future ones as well.  

1.2 Types and Sources of Indoor Air Pollution 

 When an individual presents symptoms indicating poor health, air pollution 

may not be the first place that a health care provider may look as a main cause of that 

poor health; however, the fact of the matter remains that poor air quality can undoubtedly 

contribute to compromised health. Tobacco smoke, carbon monoxide, animal dander, 

molds, dust mites, other biological organisms, volatile organic compounds, heavy metals, 
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asbestos and radon all represent types of indoor air pollution that can seriously affect 

one’s health and wellness [2]. All too often, topics like second-hand smoke or carbon 

monoxide poisoning appear in the news alongside data showing deaths from each of 

these. However, volatile organic compounds, heavy metals and other biological 

contaminants also represent true threats, but are often times ignored, belittled and glazed 

over.  

 The locations of highest concern for indoor air pollution are those involving 

prolonged, continuing exposure, most notably the home, school and workplace [2]. 

However, this paper will also investigate health-related facilities, mainly hospitals in an 

effort to determine how an extended stay in a health facility may in fact poorly contribute 

to an individual’s health and wellness.  

 According to the EPA, contaminant levels of indoor air pollutants may be up 

to 100 times higher than outdoor levels and are ranked among the top 5 environmental 

risks to the public [1]. For this reason, understanding the sources of different 

contaminants and recognizing which contribute the most and in what quantities is 

important for improving overall air quality in general, which undoubtedly has 

implications relating to human health. Table 1.3.1 lists several pollutants, their 

concentrations of concerns and some of their sources [3]. It is important to note that 

certain sources (e.g. smoking) can lead to the production of multiple contaminants.  
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Table 1.2.1: Gaseous Pollutants in Indoor Air and their Concentrations of Concern (levels 

in ppm) [3] 

 The sources of many of these pollutants are varied in nature; some of which 

cannot be avoided such as the external environment, but others are much more heavily 

influenced by individual choices such as not smoking or limiting the combustion of fossil 

fuels. While Table 1.3.1 may seem to present just a few sources and pollutants, the fact of 

the matter is that many of these sources can contribute more than just one dangerous 

pollutant. Table 1.1.2, for example, shows just a few of the carcinogens and suspected 

carcinogens in secondhand cigarette smoke alone: note the large number of compounds 

present [4]. Each of these contaminants alone have their own health-related risks and 

concentrations of concern. Combustion products in general don’t just include carbon 

monoxide, they also include carbon dioxide, sulfur dioxide, nitrogen oxide, and in 

multiple instances heavy metals such as lead (Pb) or mercury (Hg) [4].  
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Table 1.2.2 Carcinogens and Suspected Carcinogens in Secondhand Cigarette Smoke [4] 

 Just as combustion products and cigarette smoke are complicated, many of 

the products that we use on a daily basis for one purpose may have a wide variety of 

chemical constituents [4]. Recent studies suggest an increase in exposure to VOCs over 

the past two decades such as limonene, linalool, citronellol, eucalyptol, geraniol and 

alpha-pinene and some new products have over 2600 ingredients [4]. Other household 

cleaners such as bleach consist of sodium hypochlorite solutions which, when mixed with 

an acid or ammonia can release toxic chlorine gas. In addition to the materials used to 

clean our indoor environment, some of our building materials themselves can pose threats 

to human health. Formaldehyde, for example is a VOC commonly found in wood 

building materials, more specifically the resins that bind together wood products [4]. It is 

also often found in plastics, textiles, carpet, furniture, pesticides, paint, glue and cleaning 

products as well. While the concentrations of the contaminants that individuals come in 
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contact with on a daily basis may be low, the cumulative impacts and impacts over time 

can pose more of a threat to human wellbeing.  

1.3 Potential Health Hazards 

 According to the EPA, when an individual sees a healthcare provider, it is 

vital that the patient’s diurnal and other patterns are analyzed because they may provide 

clues to the patient’s link with air pollution. Certain practices in the home or the 

workplace can place the patient at higher risk of exposure and thus more concentrated 

health effects [2]. Once signs and symptoms are analyzed in addition to the patient’s 

daily activities, it can be easier to diagnose what type of exposure may exist.  

Table 1.3.1, taken from the EPA, shows different types of air pollution and their 

associated signs and symptoms [2].  

 It isn’t just tobacco smoke and carbon monoxide causing health-related 

issues; VOCs, biologicals, heavy metals, etc. all lead to respiratory or other signs and 

symptoms [2]. As mentioned earlier, often times, the sources of these contaminants 

themselves are quite complex; made up of many constituents, all with serious health 

implications. This is part of the reason why diagnosing air-pollution related ailments or 

determining the source of these contaminants can pose such a challenge. While each of 

the contaminants mentioned above contains its own unique key signs and symptoms, this 

section will focus in primarily on volatile organic compounds, as they are the primary 

contaminants of concern for the purposes of this paper. 
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Table 1.3.1: Diagnostic Quick Reference – Signs and Symptoms related to Air Pollutants [2] 

  VOCs are often the cause of the following: conjunctival irritation, nose and throat 

discomfort, headache, allergic skin reaction, dyspnea, nausea, emesis, epistaxis, fatigue 

and dizziness [2]. It is important to note that many of these symptoms can also be caused 

by other conditions or diseases and so understanding a patient’s daily routine as well as 

practices in the home and workplace are crucial in determining possible exposure. 

Questions involving the individual’s living environment and exposure to pressed wood 



www.manaraa.com

9 
 

products, as well as queries regarding the use of chemical cleaners, pesticides, paints and 

solvents are all indicators that would suggest exposure to VOCs [2].  

 While these contaminants may be present in low concentrations in the home and 

workplace, there are recent concerns that cumulative impacts and repeated, long-term 

exposure may be posing a more serious threat than one-time exposure. A 2007 European 

study followed 3503 individuals who had no asthma symptoms when the study began. 

Over the course of 9 years, 42% of participants who cleaned their houses at least once a 

week, experienced asthma symptoms or were using asthma medication and wheezing [5].  

 

Chapter 2 

 Air Pollution in Health Facilities  

2.1 An Introduction to Air Quality and Pollution in 

Hospitals  

 Unlike most homes (and a fair amount of work places) health care facilities, 

especially hospitals, are among the most demanding environments with regards to indoor 

air quality. These facilities often contain chemicals like waste medical gases (e.g. 

anesthetic gases), disinfecting and sterilizing substances, microbial contaminants and also 

other particles such as skin squames, lint, and aerosols [6]. However, in addition to 

dealing with multiple sources of air pollutants, health facilities must have some of the 

cleanest air due to the nature of certain treatment processes and operating procedures. 

Therefore, understanding the nature of contaminants present is crucial for understanding 
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how best to treat these contaminants and ensure better air quality for patients and 

healthcare workers alike.  

Before investigating contaminant sources in health facilities, it should be noted 

that other factors such as temperature, humidity, time of year, and ventilation all play an 

important role in indoor air quality as well [7]. The following graphs show the monthly 

variation in air temperature, relative humidity and carbon dioxide concentrations in 

hospital operating rooms. Note the following key: black circles – transplantation rooms, 

white circles – trauma rooms, black triangle – cardiovascular surgery room, white 

triangle – colon/rectal surgery room and black rectangle – orthopedic surgery [8].  

Figure 2.1.1 Monthly Variations of Indoor Air Quality in Operating Rooms 

 It is important to note the variation in each of these parameters based on the 

month and how some trends may seem counterintuitive. For example, even though 

months such as April, May and June have higher average temperatures than winter 

months, the indoor temperature of these different operating suites was actually lower. 

This inversely proportional temperature relationship would suggest that the air 

conditioning system was frequently operated during the summer months. This is 

important to note, because an increased stress on the HVAC system could pose a greater 
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threat to human health by leading to an increase in contaminant levels as well as favoring 

the growth of certain microbial organisms [8].  

The American Society of Heating, Refrigerating and Air-Conditioning Engineers 

recommends controlling air requirements (air flow rate of 15cfm/person) and limiting the 

number of occupants to 20 persons/1,000ft2 in operating rooms where pollutant 

concentration is strongly correlated to number of individuals [8]. This would suggest that 

high-traffic operating rooms are at greater risk of poor indoor air quality. The American 

Conference of Governmental Industrial Hygienists recommends maintaining relative 

humidity under 60% in indoor environments to help prevent microorganism growth and it 

should be noted that relative humidity level was not attained in any of the operating 

rooms in this study [8].  

 

Figure 2.1.2 Comparison of Relative Humidity and Bacterial Concentration 

The graphs above show the relationship between relative humidity and bacterial 

concentration and would seem to agree with the recommendation from the industrial 

hygienists. Months where the relative humidity levels were higher tended to see higher 

concentrations of bacteria [8]. A large turnover of patients not only requires the use of 

disinfectants and other sanitizing agents, thus increasing VOC concentration, but this 

turnover also can lead to microorganism growth and the possibility of bacterial infection. 
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Particulate matter (including biologicals) represents a pollutant of concern in 

many hospitals, necessitating the use of high efficiency particulate air (HEPA) filters, 

while advanced ventilation systems and technologies like anesthetic gas scavenging 

systems (AGSS) to recover waste anesthetic gases (WAG) are crucial for VOC removal 

[6]. Ventilation systems can either have positive or negative effects on indoor air quality 

depending on their current state of contamination. For example, HVAC systems can 

affect contamination of operating rooms by carrying unfiltered aerobic bacteria both in an 

out of the room of concern. Once a system is compromised, it can continue to pollute an 

indoor air environment even though it is assumed that it is actually improving air quality. 

Technologies such as laminar air flow (LAF) ventilation have been shown to effectively 

reduce both content of particles in the air and bacteria on the floor when compared to 

conventional ventilation systems [9].  High turbulence air flow corresponds to higher 

mixing rates than laminar flow, thus increasing the risk for contaminant travel and cross 

contamination of systems.  

 Research has shown; however, that greater potential for transmission of infection 

exists in surfaces such as tables, and operating instruments themselves rather than 

surfaces such as the walls or floor [10]. This would suggest that operating room air 

doesn’t have as large an effect on bacterial contamination as long as air exchanges are 

performed regularly and ventilation methods are up to date and not compromised [10]. In 

fact, unlike the required sterilization of tools and operating surfaces, weekly 

decontamination of walls with specific chemicals seems to have little role to play in 

minimizing postoperative infection [11]. Although these disinfectants may be used to 
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decrease the risk of infection, they may be having little impact and could possibly be 

increasing VOC concentration posing even more of an air quality threat.  

2.2 Volatile Organic Compounds in Hospitals 

Anesthetic gases and disinfectants/sterilants represent specific categories of VOCs 

that are undoubtedly required in hospitals for patient comfort and operational procedures, 

but also to maintain a clean environment. As such, ensuring proper air quality in 

consideration of these chemicals is of critical importance. Most general anesthesia 

involves the use of gases or volatile liquids that are vaporized and then inhaled with 

medical air, nitrous oxide or a combination, as well as drugs that are delivered 

intravenously [12]. Halothane, enflurane, isoflurane, sevoflurane and nitrous oxide are all 

examples of anesthetic gases which all have the potential to escape delivery. When these 

gases escape, they are considered WAG and are usually treated by AGSS [6]. It is 

important to note; however, that even operating rooms with AGSS still have the potential 

for poor air quality as issues such as inadequate ventilation, poor work practices or 

inadequate maintenance can all effect the treatment of these volatile gases. Figure 2.2.1 

shows the concentration of anesthetic compounds (isoflurane, sevoflurane) in a sample of 

operating rooms [6].  

Even operating rooms that had AGSS still saw elevated concentrations of 

anesthetic gases compared to rooms that did not have the technology in place. This would 

suggest that there are multiple factors involved that are able to affect the treatment of 

these operating room volatile liquids and gases. 
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Figure 2.2.1 Measured Concentration of Anesthetic Gases in 17 out of 20 Audited 
Operating Rooms (missing data corresponds to hospitals that did not grant permission to 

make measurements) [6] 

  

In addition to anesthetic gases, hospitals also have large concentrations of 

aldehydic compounds such as formaldehyde and glutaraldehyde as well as other sterilants 

and general disinfectants (e.g. ethylene oxide) [6]. These compounds are unavoidable in 

many cases as they ensure minimal transfer of biological contaminants and the overall 

cleanliness of health-related facilities in general. However, as mentioned earlier, many of 

these VOCs also have health impacts if individuals are exposed chronically or in 

conjunction with other chemicals. Table 2.2.1 shows the occupational exposure limits of 

many of these compounds encountered in operating rooms (OR) including anesthetic 

gases [6]. TLV refers to the threshold limit value for an 8 hour exposure, TWA refers to 

the time weighted average and STEL refers to short-term exposure limit.  
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Table 2.2.1 Occupational Exposure Limits for Compounds Encountered in ORs [6] 

In addition to general health effects like headaches, nausea, dermal irritations and 

difficulty in breathing, formaldehyde is considered carcinogenic and ethylene oxide is 

considered both carcinogenic and mutagenic with other symptoms including anemia, 

secondary respiratory infections, skin sensitization, miscarriages and reproductive 

problems [6].  STEL limits can be higher than TLA and TWA values as short 

concentrations are more tolerable for 15 minutes as opposed to inhaling a compound for 8 

hours or longer.  

 A 2008 study investigating 20 different operating rooms (OR) in Hellenic 

hospitals was designed to quantify the total concentration of volatile organic compounds 

present (TVOC) [6]. Samples of the organic compounds were collected in tenax-TA 

tubes using low flow sampling pumps (about 1m from the floor). The sampling volume 

was 3000mL and the analysis was performed using thermal desorption (Tekmar 2000), 

gas chromatograph (Varian Star 3400 CX) equipped with a capillary column and mass 

spectrometry [6]. Table 2.2.2 present the VOC data for different groups of compounds 

[6].  
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Table 2.2.2 Average Concentrations of Volatile Organic Compound in the Indoor Air of 
Audited Operating Rooms [6] 

 Overall, the concentrations of anesthetic gases were quite high and exceeded the 

exposure limit in 18% of the audited operating rooms, while the values were usually 

significantly lower in operating rooms with AGSS [6]. Formaldehyde concentrations 

were found to be quite high in some instance while concentrations of glutaraldehyde were 

always below the exposure limit in each of the operating rooms. It should be noted that 

the contaminants measures (i.e. anesthetic compounds, formaldehyde, and 

glutaraldehyde) did not make up the entirety of the TVOC concentration. In fact, in 

addition to the expected compounds, various other compounds existed in the indoor air 

environment accounting for 54% or more than half of the TVOC concentration of 

8862g/m3 [6].  This suggests that a fair amount of other VOCs are present in hospital 

operating rooms than those that were studied and a more comprehensive study is required 

to analyze the other compounds present.  
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Another, more recent study in 2013 investigated six sampling sites throughout a 

French teaching hospital and detailed the concentrations of more than 40 VOCs. The six 

sampling sites included the reception hall, patient room, nursing care, post-anesthesia 

care unit, parasitology-mycology laboratory and flexible endoscope disinfection unit 

[13]. Unlike the previous study, which just investigated operating rooms, this more recent 

study not only extended to different labs, patient rooms and reception areas, but also 

represents a more comprehensive sampling of VOCs. For the study, air samples were 

dynamically collected using low flow pumps (LFS 113 DC) and air flow was set with a 

Gilian Gilibratir 2 calibrator.  

Very low concentrations were expected, so VOC samples were pre-concentrated 

on solid samples and then enriched with tubes containing three different carbon-based 

sorbents.  Two different sorbent systems were used as analyses were split between two 

laboratories. Aromatic and halogenated hydrocarbon, alcohol, and ketone sampling was 

carried out with a multisorbent tube packed with Carbopack C, Carbopack B and 

Carboxen 1000 (with a pumping flow rate of 30mL/min). Whereas aliphatic 

hydrocarbons, ethers and terpenes were sampled with a multisorbent tube packed with 

Tenax TA, Carbograph 1 TD and Carboxen 1000 (with a pumping flow rate of 

50mL/min) [13].   

 For VOC analysis, a combination of automatic thermal desorption, capillary gas 

chromatograph and mass spectrometer were used to analyze the different concentrations. 

In terms of validation, the limit of detection (LOD) was defined as the concentration at 

which the signal-to-noise ratio (S/N) was equal to 3, and the limit of quantification 
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(LOQ) was defined as the lowest concentration at the signal-to-noise ratio of greater than 

or equal to 10 with a precision less than 25%.  

 Table 2.2.3 shows the products used at the hospital in general and where each of 

those types of products are predominantly utilized [13].  

 

Table 2.2.3 List and Number of Different Class of Products Used in the Six Sampling 
Sites [13] 

 Of the 58 different products used, laboratory products made up 41% while 

anesthetic gases only comprised 5%, suggesting a large number of laboratory products in 

general and a very limited use of the anesthetic gases. It is also important to note that 

certain classes of products, (e.g. cleaning/disinfecting) were prevalent in nearly each of 

the six sampling sites. Overall, the parasitology laboratory was the site with the highest 

number of products used (33) while 73% of those were strictly laboratory products 

(chemicals and reagents) [13].  

Table 2.2.4 details the distribution of indoor air concentrations of the target 

compound measured in all sites.  
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Table 2.2.4 Distribution (mean, standard deviation (SD), minimum, 25th percentile, 

median, 75th percentile and maximum) of Indoor Air Concentrations of Target 

Compounds Measured in all Sites (n=36) [13]. 
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 The study results show that the contamination of indoor air was dominated by 

alcohols and the concentration of ether and acetone were relatively high compared to 

other compounds. The overall concentration of aromatic hydrocarbons was less than 

10g/m3, while the concentrations of formaldehyde and glutaraldehyde were equally 

distributed between the sites. Overall, the nature of the contamination was not 

significantly different between the sampling sites (p>0.05). Interestingly, the reception 

hall (initially chosen as the references because no health related activities occur there) 

had similar VOCs concentrations as the other sites [13]. This would suggest that even 

areas where there are no health-related activities performed could still pose a threat to 

human health as VOC levels were not that different from laborites and operating rooms.  

 It should be noted that for all of the target compounds, the concentrations 

measured in the indoor air were below the occupation exposure limit values set in France, 

the European Union and the United States [13]. In fact, in certain instances 

concentrations of aromatic hydrocarbons measured are similar or lower than those found 

in residential and non-residential indoor environments [14-16].  

2.3 Health Related Effects of Volatile Organic Compounds 

 Even though these VOC concentrations were found to be below the exposure 

limits, the study does not take into account long-term, chronic exposure, or intense short-

term exposure effects. In fact, chronic exposure to benzene may induce genotoxic, 

immunological and hematological effects [17]. Exposure to naphthalene can lead to 

respiratory issues such as lesions and infections [17] and acute exposure to certain 

aliphatic hydrocarbons which are commonplace in paints, adhesives and building 
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materials can affect the central nervous system and induce drowsiness and dizziness [18]. 

Although many of the chemicals were technically below what would be considered 

dangerous concentrations, coming into contact with VOCs, especially carcinogens in any 

capacity can have poor health effects especially over an individual’s lifetime.  

2.4 Limitations of Previous and Current Studies 

 While the studies discussed in the previous section detail VOC exposure and 

concentrations, and provide crucial information for understanding VOC and contaminant 

exposure in general, they have multiple limitation that should be addressed in further 

studies. The first study of Hellenic hospital operating rooms only focused on a few target 

VOCs (mainly anesthetic gases, formaldehyde and glutaraldehyde) and did not indicate 

the compounds which composed the majority of TVOC concentration. While it assessed 

20 different operating rooms, there is variability in each of the hospitals and health-

facilities that may have affected the baseline VOC level [6].  

 The second study; while providing a more detailed profile of VOC contamination 

was limited to only one French teaching hospital. However, cleaning/disinfecting 

products and chemicals in general are most likely commonplace across hospitals which 

would suggest a similar VOC profile in other hospitals. However, it should be noted that 

VOCs and other contaminants in general are released from multiple sources not just 

related to health facilities. Building materials, the outdoor environment and other outside 

sources are all possible contributors [13].  

 Overall, both studies reflected stationary sampling of ambient air and do not truly 

reflect the real exposure of patients and workers. The duration of exposure is also 

unaccounted for with stationary sampling as is cumulative impact (e.g. a worker traveling 
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from room to room during peak exposure levels). While ambient VOC concentrations are 

a quintessential starting point for understanding both healthcare worker and patient 

exposure, they are not comprehensive in describing true cumulative or chronic impacts.  

Chapter 3  

Treatment of VOCs via Photocatalytic 

Oxidation (PCO) 

3.1 Introduction to Photocatalytic Oxidation 

Due to the undisputed health effects and carcinogenic properties of many VOCs, 

new and improved treatment technologies represent a growing area of interest for many 

scientists and engineers.  While different treatment techniques exist to help treat VOCs 

such as activated carbon adsorption or afterburners, these techniques usually involve 

transfer of contaminants from one phase to another and require further disposal or 

treatment or high energy inputs. Photocatalytic Oxidation (PCO) represents an 

alternative: a semiconductor catalyst (often times TiO2) is used in the presence of a light 

source to degrade pollutants into primarily anodyne products (usually CO2 and H2O) 

[20]. PCO also operates at room temperature and exhibits activity towards a large variety 

of contaminants [19].  
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In PCO, energy, in the form of light (photons) is able to excite an electron from 

the valence band (VB) to the conduction band (CB), consequently leaving a positive hole 

in the VB. This photoreaction leads to the formation of electron-hole pairs, which in turn, 

drive oxidation and reduction reactions at the surface of the photocatalyst [21]. This 

process is described more specifically by Hay et. al: first, pollutant species are adsorbed 

onto the semiconductor surface. Then, the semiconductor surface is activated by light 

(usually UV) and electron-hole pairs are formed which lead to the formation of hydroxyl 

(OH) and superoxide (O2
-) radicals. Third, these free radicals then attack the pollutant to 

be oxidized (e.g. VOCs). Lastly, these sequential free radical attacks degrade the 

pollutant to form CO2 and H2O (as well as other possible by-products) [22]. PCO leads to 

the formation of water and carbon dioxide (usually in very small amounts) and represents 

a more viable option than some other techniques, as the products formed are primarily 

benign. Filtration requires cleaning of the filtrate and activated carbon adsorption requires 

removal via desorption. In both of these techniques, the target contaminants are not 

degraded, but only transferred.  

 

 

 

 

Figure 3.1.1 TiO2 UV Figure 3.1 Photocatalytic oxidation of VOCs [21] 

 Figure 3.1 [21] shows an electron in the VB of TiO2 excited to the CB and the 

subsequent formation of radicals. Note, the energy required is 3.2eV and that this value 
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varies depending on the semiconductor catalyst used. If the energy from the light source 

is not at least 3.2eV in this case, the electron will not be excited into the CB and 

photocatalytic oxidation will not occur (i.e. no pollutant degradation).  

The following represent the reactions involved in this process as outlined by Mamaghani 

et al. [19]:  

(1) TiO2 + h  TiO2(e-
CB + h+

VB )                                                                                                             

(2) TiO2(h+
VB) + H2O  TiO2 + H+OH                                                                                                            

(3) TiO2(h+
VB) + OH-  TiO2 + OH                                                                                                                 

(4) TiO2(e-
CB) + O2  TiO2 + O-

2                                                                                                                    

(5) O-
2 + H+  H

2                                                                                                                                               

(6) HO
2 + HO

2  H2O2 + O2                                                                                                                                                                                         

(7) TiO2(e-
CB) + H2O2  OH- + OH                                                                                                                                                                          

(8) VOC + O2 + OH  H2O + CO2 + other products                                                                                    

 These reactions show light energy (h) leading to the formation of electron-hole 

pairs (TiO2(e-
CB + h+

VB)) in the TiO2. These then react with hydroxide, water and oxygen 

to form the free radicals that are able to degrade the VOCs. Note that there is the 

possibility to form other products, which can include ozone (O3) as well as hydrogen 

peroxide (H2O2) and other intermediate radicals.  

 While TiO2 is currently the most promising photocatalyst (primarily due to its 

stability and suitable positions of VBs and CBs), other options (including ZnO, ZrO2, 

SnO2, WO3, CeO2, ZnS and Fe2O3) all exhibit semiconductor photocatalytic properties 

and can also potentially degrade VOCs and other gaseous pollutants [21]. 
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3.2 Air Purification Design, Light Sources and Pollutants 

Degraded  

 Design of different air purification systems using photocatalytic oxidation is 

dependent on multiple factors including pretreatment of contaminated air, capital costs, 

light sources and catalyst choice. While these factors can all vary, the generic design for 

the reactor is presented in Figure 3.2.1 [22].  

  

 

 

 

 

 

Figure 3.2.1: Generic Multi-Stage, Honeycomb-Monolith Photocatalytic Reactor [22] 

 In this design, there are multiple stages where UV light is able to excite electrons 

on the Titania coated supports. 100% removal efficiency is not a viable option so 10-20% 

removal per pass is desired.  Oxidation occurs at each of the stages and the light sources 

depend on the desired contaminant degradation. For example, there are differences 

between germicidal lamps, UV fluorescent lamps, black light fluorescent lamps and LED 

light sources. The sun can technically also be used, but its penetration into indoor 

environments (especially inside the reactor) is quite limited. Each of these different light 
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sources operates at different wavelengths, which correspond to different energy levels 

[22].  

It is important to consider the implications of the light source used in PCO, in 

regards to cost, contaminant activity and resilience. Table 3.2.1 [22] presents information 

regarding different light sources:  

Photon Emitter UV Wavelength 

Range 

Approximate Lifetime 

Sun 
UVA and UVB; most 

UVC absorbed in 
atmosphere 

Exists with daylight 

Black Light 
Fluorescent 

UVA (20nm ± 50nm 
FWHM) 

5,000-12,000 hr (usually limited 
by phosphor degradation) 

Germicidal 
Fluorescent 

UVC (254nm) 10,000-20,000 hr 

LEDs 
Various, 190nm to 

1100nm 

Wavelength dependent, a few 
thousand hours at short 

wavelengths 

Table 3.2.1 Common UV Light sources for an Ultraviolet Photocatalytic Oxidation  

(UVPCO) Air Purifier [22] 

 

 Different light sources are chosen based on target contaminants. For example, if 

the goal is to inactivate viable bioaerosols (such as bacteria, mold spores and airborne 

viruses), a germicidal lamp is required, although filters (such as HEPA) can also be used 

as pretreatment to prevent catalyst deactivation [22]. Unfortunately, PCO is not capable 

of degrading all biological contaminants, and normally can only break down the smaller 

spectrum of bioaerosols before deactivation takes place. Previous research shows 

photokilling of bacteria and viruses using TiO2 in aqueous media and evidence suggests 

this capacity can be exhibited in air as well. Both Escherichia coli and Legionella 

pneumophila (similar in size: 1-1.5 microns) have the possibility to be removed via 
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photocatalysis and Keller et al. report concentrations less than 1 CFU (colony-forming 

unit) in the purified outlet air stream after the photocatalytic reactor [23]. Table 3.2.2 

shows E. coli inactivation as a function of total flow rate and bacteria concentration.  

Aerosol Flow Rate 
 90L/hr 

(1.5L/min) 
240L/hr 
(4L/min) 

350L/hr 
(6L/min) 

Bacteria 
Concentration 

(CFU/m3 of flowing 
air) 

 
15,000 12,000 7,500 

Bacteria content 
(CFU) collected on 

sampling membranes 

Contaminated-inlet air 
stream (before reactor) 

110 160 220 

Purified-outlet air stream 
(after reactor) 

0 0 0 

Bacteria removal 
efficiency (%) 

 >99.1 >99.4 >99.5 

Table 3.2.2 E. coli Inactivation via Photocatalysis [23] 

In addition to biological contaminants, TiO2 also acts as a substrate for VOC 

removal, with the most common VOCs in the built environment found by the EPA BASE 

(Building Assessment Survey and Evaluation) study being benzene, toluene, 

ethylbenzene, and o-xylene (referred to as BTEX), as well as formaldehyde, naphthalene, 

and acetaldehyde [24]. These different VOCs have different PCO reaction rates based on 

their chemical and physical properties. Certain species saturate the surface, others can 

form additional layers and still others chemisorb as intermediates; each contaminant 

behaves differently competing against water as well as the other pollutants present in the 

air. These different contaminants of interest are graphed in Figure 3.2.2 [22]. 
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Figure 3.2.2: Measured PCO Reaction Rates for VOCs of Interest in Indoor Air.           

UV 1mW/cm2, 6000ppm water level [22] 

 The oxidation rate vs. gas phase concentration is primarily linear at lower 

concentrations, seems to plateau at higher concentration rates and either decreases or 

increases (depending on the pollutant) at the highest concentrations, thus graphically 

representing the disparities between pollutants. In addition to bioaerosols and VOCs, 

studies have shown that photocatalysts can also remove NO; this will be discussed in 

more detail in the case studies portion of this paper.  

3.3 Case Study 1: Enhanced Photocatalytic Degradation of 

VOCs using Ln3+ - TiO2 Catalysts for Indoor Air 

Purification [25]  

 Multiple research efforts have sought to either improve removal efficiency of 

contaminants, use other materials in conjunction with photocatalysts (e.g. doping) or 
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study the removal efficiency of chemicals that may have not previously exhibited 

degradation via photocatalysis. The following case studies were investigated in detail to 

determine disparities and long term viability.  

 Research has shown that multiple additions/improvements can be made to 

preexisting photocatalysts to improve their surface area and contaminant intake. Li et al. 

have prepared two new lanthanide ion doped photocatalysts via the sol-gel method: (1) 

La3+ - TiO2 and (2) Nd3+ - TiO2. These catalysts have an increased specific surface area, 

micropore volume and an increased adsorption capacity for both nitrogen and VOCs. [25] 

Previous research indicates that incorporating certain lanthanides into catalyst substrates 

could improve the overall adsorption capacity for photocatalysis [26] while 

simultaneously improving the photochemical properties (mainly the conversion 

efficiency in certain light wavelengths) [27].  

 In this study, La3+ and Nd3+ were used to dope TiO2 in varying lanthanide 

concentrations (0.7%, 1.2%, 1.6% and 2.0%) via a sol-gel process. This involved 

formation of a colloidal suspension, which was subsequently stirred and aged to form a 

gel. The gel was later dried, ground and then calcined in preparation for loading onto the 

substrate [25].  

 A continuous gas flow reactor system with a photoreactor and 365nm wavelength 

UV lamp were used in this study in addition to two different gas cylinders containing the 

pollutants. The first cylinder contained benzene, toluene, ethyl-benzene and o-xylene 

(BTEX) (1:1:1:1 ratio, 1ppmv concentration) and the second contained NO (50ppmv 

concentration). The removal efficiency of these pollutants was determined to be greater 

with lanthanide-doped photocatalysts. Table 3.3.1 shows the improvements that 
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lanthanide doped catalysts exhibit in terms of surface area, micropore volume and total 

pore volume.   

Table 3.3.1: Crystal Parameters and BET data of TiO2 and Ln3+ - TiO2 Catalysts 

 In some instances, values almost doubled for certain parameters listed above, and 

these translated to improved efficiency in removing contaminants (as shown in Figure 

3.3.1 and Figure 3.3.2).    

 

 

Figure 3.3.1: PCO Degradation of Benzene                 Figure 3.3.2: PCO Degradation of o-xylene 
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These figures show a large improvement in pollutant removal with o-xylene being 

removed at higher levels than Benzene. Both toluene and ethylbenzene showed 

improvements as well and had removal efficiencies in between those of the contaminants 

shown. It should be noted that the 1.2% doped catalyst proved to have the highest 

removal capacity although the 0.7% catalyst showed the highest surface micropore 

surface area and pore volume. This can be interpreted to mean that the photocatalytic 

activity of the 1.2% doped catalyst (separating electron-hole pairs more efficiently) had a 

larger impact than the larger adsorption capacity of the 0.7% doped catalyst. It was also 

determined that an increase in humidity level corresponded to a decrease in removal 

efficiency while an increase in NO concentration corresponded to an increase in 

efficiency. This is believed to be caused by the fact that at higher humidity levels, water 

can outcompete VOCs for the active sites on the TiO2 surface while photodegradation of 

NO led to the formation of more free radicals and thus further removal of BTEX.  

3.4 Case Study 2: Indoor Air Purification by Photocatalyst 

TiO2 Immobilized on an Activated Carbon Filter Installed 

in an Air Cleaner [28] 

 Much research has been done on the ability of activated carbon (AC) to adsorb 

VOCs and AC is currently ubiquitously used for this purpose. However, one of the main 

issues with the technology is that contaminants are solely transferred from one phase to 

another and then further treatment and/or disposal are required. This paper focuses on 

pairing both AC and PCO to improve the removal and eventual degradation of harmful 

contaminants (mainly toluene and NO in this study). Using TiO2 immobilized on an 
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activated carbon (TiO2/AC) filter improved the removal efficiencies of both NO and 

toluene. Research shows that the activated carbon provides a larger adsorption capacity, 

and the adsorbed NO on this filter is then transferred to the photocatalyst for 

photodegradation [28].  

 Gas cylinders containing both NO (50ppmv) and toluene were used as the 

contaminants and their removal efficiency was recorded. Figure 3.4.1 shows the 

experimental design.  

 

 

 

 

 

 

 

Figure 3.4.1: Schematic Diagram of Air Cleaner 

 A high-efficiency particulate air filter (HEPA) and an activated carbon filter (AC) 

were both used prior to oxidation, and contaminants can be stored in the filters and then 

later degraded leading to improved air quality. The centrifugal fan draws air from the 

filters and flows it towards the UV lamp and photocatalyst. Figure 3.4.2 and Figure 3.4.3 

show the differences between the photocatalyst alone and the photocatalyst paired with 

an AC filter for both NO and toluene.  
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Figure 3.4.2: NO Removal via PCO               Figure 3.4.3: Toluene Removal via PCO 

 Both NO and toluene were removed at greater efficiencies when an AC filter was 

used in conjunction with the photocatalysis process. The NO concentration reached a 

steady state value at 60 min (AC) while it was still decreased when no AC filter was 

used. This small residence time and low NO concentration decrease the probability of NO 

contact with radicals. The AC filter increases the adsorption of NO and then transfers it to 

the photocatalyst (TiO2) where it is degraded. At lower concentrations of contaminants, 

the residence time is increased, which means there are fewer interactions between 

contaminants and radicals. By using an AC filter, these interactions are increased and the 

lower initial concentration, in theory, acts as a higher concentration [28].  

 Toluene was removed solely with a HEPA and AC filter (most likely due to 

adsorption of toluene on the activated carbon filter), but the largest removal efficiency 

was clearly with the photocatalyst and AC filter. While NO had a higher removal 

efficiency in general (97%), when compared to toluene (89.5%), the difference in 

removal efficiency (between TiO2 and TiO2/AC) of toluene (49.5%) was much higher 

than that of NO (13.8%).  This is most likely a function of the less photoreactive nature 
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of toluene, which corresponds to a greater enhancement effect of the TiO2/AC filter with 

toluene as opposed to NO [28].  

Under low residence time, low pollutant concentration and high levels of relative 

humidity, the use of the TiO2/AC filter proved to be very effective in removing 

contaminants. However, as concentrations increase and humidity decreases, the use of an 

AC filter is of less importance and the contaminants do not need to be concentrated and 

transferred (they are already in high enough concentrations and interactions between 

radicals and contaminants are relatively high). However, with low residence times and 

few particle interactions, the AC filter is quintessential in concentrating pollutants and 

leading to a higher removal efficiency [28].  

The following two case studies involve new photocatalysts that are not TiO2 

3.5 Case Study 3: ZnO for Photocatalytic Air Purification 

Applications [29] 

 Similar to TiO2, ZnO also has high photosensitivity, stability, a large band gap, 

strong oxidizing power, and is also non-toxic, making it another viable candidate for 

PCO. Research shows that ZnO can exhibit an even higher activity than titanium dioxide 

in the photodegradation of dyes, and this paper focuses on the air purification properties 

of ZnO coated textiles as well as nano and micro-structured ZnO coatings. ZnO was 

chemically deposited on to organic substrates and despite damage to these substrates 

during deposition; good adhesion resulted even after successive washings. Multiple 

substrates were tested including Organic Cotton, Silk+Viscose, Bambus, Tencel and 

Glass Fibers. Out of these substrates, the glass fibers were the most promising, as they 
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were able to sustain ZnO nanostructure growth, which is crucial for PCO. Figure 3.5.1 

shows the ZnO nanostructure coating on the glass gibers [29].  

Figure 3.5.1: Nanostructured ZnO Coating onto Glass Fiber Substrates (SEM) 

 The 2-micron scale image clearly shows the ZnO particles, which are the essential 

catalyst for the PCO process. Other substrates (specifically organic) were not able to 

support ZnO nanoparticles and were normally degraded during deposition. SEM and 

XRD shows that highly crystalline ZnO growth occurs on different textile fibers with 

varying success. The nature of the substrate has implications for ZnO deposition and thus 

potential activity and removal potential for contaminants. Figure 3.5.2 shows methylene 

blue (MB) degradation using photocatalysis [29].  

 

 

 

 

 

Figure 3.5.2: MB Discoloration onto ZnO onto Glass Fiber Substrate 
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 The glass fiber coated with MB was shown to discolor after exposure to UV light 

as the deposited ZnO nanoparticles were able to photocatalytically degrade MB. Further 

research will include experiments relating to formaldehyde degradation using similar 

textile substrates and catalysts [29]. This work not only has implications in terms of 

creating a device that can purify indoor air, but it also can potentially lead to research 

involving textiles that people can wear that can actively degrade contaminants.  

3.6 Case Study 4: Facile Synthesis of in situ Phosphorus-

doped g-C3N4 with Enhanced Visible Light Photocatalytic 

Property for NO Purification [30] 

 Photoactivity of catalysts is one of the greatest limitations of the PCO process and 

so new materials and doping strategies seek to improve removal efficiency. In this case, 

graphitic carbon nitride (g-C3N4) is used as it is metal free, easily synthesized, stable, has 

a suitable band gap and a unique electronic structure [30]. In contrast to these advantages, 

g-C3N4 also has a low quantum efficiency, small surface area, low visible light 

utilization, and sub-par catalytic performance. However, both metal (Fe, Li, K) and non-

metal (S, B, P) doping, micro-structural engineering (e.g. nanospheres or nanoflowers) 

and the construction of heterojunctions (e.g. g-C3N4/(BiO)2CO3) have been found to 

improve the overall photocatalytic capability of the substrate [30].  
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 Previous studies have investigated carbon dots and nanocomposites, thermally 

induced copolymerization, and mesoporous doped substrates with nanoflowers as 

methods for phosphorus doping. However, in this study, a novel P-doped catalyst was 

formed by directly heating a mixture of thiourea and Cl6N3P3 in air. This phosphorus-

doped catalyst showed substantial efficiency improvements over the pure sample [30] 

when exposed to NO concentrations.  TEM was used to investigate the differences 

between these two samples showing the abundant pore structures and improved surface 

area of the doped catalyst. Table 3.6.1 shows a comparison of different catalysts with 

respect to both surface area and pore volume.  

Table 3.6.1: Surface Area and Total pore Vol. of CN, CN—P-3, CN—P-5 and CN—P-10 

 The data shows an increase in both surface area and total pore volume due to 

phosphorus doping, with the largest values being for the CN—P-10 catalyst. The 

photocatalytic properties of these catalysts were evaluated by removal of NO in the gas 

phase. After 30min, the NO removal ratios of CN, CN—P-3, CN—P-5 and CN—P-10, 

were 28.7%, 37.7%, 42.3%, and 37.5% respectively, and this is shown in Figure 3.6.1. 
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Figure 3.6.1: Photocatalytic Activity for the Removal of NO Under Visible Light 

Irradiation (420nm) 

 The CN—P-5 proved to be the best catalyst in removing NO mainly due to 

increased surface area and pore volume (promoting mass transfer and providing more 

active sites), its ability to separate and transfer photo-generated electrons and holes (thus 

increasing quantum yield and activity), and lastly, it’s down shift valence band-edge 

potential (increase in gap between VB and CB), which led to a stronger oxidation ability 

and thus improved removal efficiency [30]. The results suggest that phosphorus doping 

has serious implications on removal efficiency and critical effects on the physiochemical 

properties of catalysts.  

3.7 Feasibility of Photocatalytic Oxidation 

 Overall, air purification via photocatalytic oxidation proves to be a viable method 

for removing low concentrations of volatile organic compounds, small bioaerosols, as 
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well as gases such as NOxs. While TiO2 is the primary photocatalyst of choice in many 

applications, new research shows that the photocatalytic activity can be improved using 

Ln3+ and also by using PCO in conjunction with an activated carbon filter. Additionally, 

other materials, both organic (g-C3N4) and inorganic (ZnO), also exhibit photocatalytic 

properties and have the potential to become viable alternatives to titanium and may in 

fact even improve overall removal efficiency. Case studies show that doping increases 

both the surface area and total pore volume of the material, consequently leading to 

higher removal efficiencies in multiple instances.  

 Improving indoor air quality represents a crucial facet of air quality engineering 

as people are spending more and more of their time indoors, and the EPA has reported 

that indoor air pollution poses a greater health risk than outdoor air pollution [31]. PCO, 

unlike many other technologies, degrades contaminants into innocuous products, mainly 

water and carbon dioxide and doesn’t require further treatment. Further research in the 

field is leading to improved efficiencies and increasing the viability of the technology, 

making scaling up and economic profitability outcomes in the near future.  
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Chapter 4 

Conclusion 

 Outdoor air quality can often overshadow indoor air quality concerns as pollutants 

such as carbon dioxide, greenhouse gases in general, ozone, sulfur dioxide, and 

particulate matter frequently represent areas of concerns and debate in the public sphere. 

However, as individuals are spending an increasing amount of time indoors, concerns 

regarding our indoor air environment are receiving more attention than ever. According 

to the EPA, humans spend over 90% of their time in indoor environments and as such, 

ensuring clean and contaminant free air is crucial for human health and wellness.  

 Many of the contaminants in indoor environments can be a product of external 

sources or outside air; however, there are also many sources of contaminants in both 

residential and non-residential facilities. Some of these contaminants may be natural, 

while others come directly from human use. Understanding sources of these 

contaminants, especially in our health facilities represents a quintessential factor in 

understanding how to contain, mitigate and avoid these pollutants altogether.  

 Health facilities not only represent facilities with large sources of indoor air 

contaminants, but these facilities in general can have higher standards for air quality than 

many residential or industrial locations. As such, high quality filters, ventilation systems 

and practices are put in place to ensure minimal exposure to these pollutants. However, 

these practices are not always completely effective. Healthcare workers and patients are 
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exposed to not only biological contaminants and particulate matter, but also VOCs in 

varying concentrations.  

 More than 40 VOCs have been measured in indoor environments and while these 

contaminants are below exposure limits in most cases, most sampling techniques do not 

allow for a true understanding of acute, cumulative or chronic exposure. While 

technologies such as activated carbon adsorption, and photocatalytic oxidation (PCO) 

exist to help combat these contaminants, these methods are not always feasible or 

effective in practice as they are in theory. While PCO definitely represents a viable 

option, there are undoubtedly limitations and challenges associated with scaling and 

implementation. Further studies not only investigating long term impacts of VOC 

exposure, but also involving more advanced and developed treatment technologies will 

prove helpful in providing a more complete understanding of the indoor environment and 

aid in improving our air.  
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